TensorFlow - 多层感知器学习

  • 简述

    多层感知器定义了人工神经网络最复杂的架构。它基本上由多层感知器构成。
    多层感知器学习的示意图如下所示 -
    多层感知器
    MLP 网络通常用于监督学习格式。MLP 网络的典型学习算法也称为反向传播算法。
    现在,我们将专注于使用 MLP 实现图像分类问题。
    
    # Import MINST data 
    from tensorflow.examples.tutorials.mnist import input_data 
    mnist = input_data.read_data_sets("/tmp/data/", one_hot = True) 
    import tensorflow as tf 
    import matplotlib.pyplot as plt 
    # Parameters 
    learning_rate = 0.001 
    training_epochs = 20 
    batch_size = 100 
    display_step = 1 
    # Network Parameters 
    n_hidden_1 = 256 
    # 1st layer num features
    n_hidden_2 = 256 # 2nd layer num features 
    n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 
    # MNIST total classes (0-9 digits) 
    # tf Graph input 
    x = tf.placeholder("float", [None, n_input]) 
    y = tf.placeholder("float", [None, n_classes]) 
    # weights layer 1 
    h = tf.Variable(tf.random_normal([n_input, n_hidden_1])) # bias layer 1 
    bias_layer_1 = tf.Variable(tf.random_normal([n_hidden_1])) 
    # layer 1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, h), bias_layer_1)) 
    # weights layer 2 
    w = tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])) 
    # bias layer 2 
    bias_layer_2 = tf.Variable(tf.random_normal([n_hidden_2])) 
    # layer 2 
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, w), bias_layer_2)) 
    # weights output layer 
    output = tf.Variable(tf.random_normal([n_hidden_2, n_classes])) 
    # biar output layer 
    bias_output = tf.Variable(tf.random_normal([n_classes])) # output layer 
    output_layer = tf.matmul(layer_2, output) + bias_output
    # cost function 
    cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
       logits = output_layer, labels = y)) 
    #cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output_layer, y)) 
    # optimizer 
    optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) 
    # optimizer = tf.train.GradientDescentOptimizer(
       learning_rate = learning_rate).minimize(cost) 
    # Plot settings 
    avg_set = [] 
    epoch_set = [] 
    # Initializing the variables 
    init = tf.global_variables_initializer() 
    # Launch the graph 
    with tf.Session() as sess: 
       sess.run(init) 
       
       # Training cycle
       for epoch in range(training_epochs): 
          avg_cost = 0. 
          total_batch = int(mnist.train.num_examples / batch_size) 
          
          # Loop over all batches 
          for i in range(total_batch): 
             batch_xs, batch_ys = mnist.train.next_batch(batch_size) 
             # Fit training using batch data sess.run(optimizer, feed_dict = {
                x: batch_xs, y: batch_ys}) 
             # Compute average loss 
             avg_cost += sess.run(cost, feed_dict = {x: batch_xs, y: batch_ys}) / total_batch
          # Display logs per epoch step 
          if epoch % display_step == 0: 
             print 
             Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)
          avg_set.append(avg_cost) 
          epoch_set.append(epoch + 1)
       print 
       "Training phase finished" 
       
       plt.plot(epoch_set, avg_set, 'o', label = 'MLP Training phase') 
       plt.ylabel('cost') 
       plt.xlabel('epoch') 
       plt.legend() 
       plt.show() 
       
       # Test model 
       correct_prediction = tf.equal(tf.argmax(output_layer, 1), tf.argmax(y, 1)) 
       
       # Calculate accuracy 
       accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 
       print 
       "Model Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
    
    上面的代码行生成以下输出 -
    使用 MLP 实现